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ALMOST POSITIVE CURVATURE
ON THE GROMOLL-MEYER SPHERE

J.-H. ESCHENBURG AND M. KERIN

(Communicated by Jon G. Wolfson)

Abstract. Gromoll and Meyer have represented a certain exotic 7-sphere Σ7

as a biquotient of the Lie group G = Sp(2). We show for a 2-parameter family
of left invariant metrics on G that the induced metric on Σ7 has strictly positive
sectional curvature at all points outside four subvarieties of codimension ≥ 1
which we describe explicitly.

1. Introduction

Let G = Sp(2) be the Lie group of unitary quaternionic 2×2-matrices. Consider
the subgroup U ⊂ G × G,

(1.1) U = {(( q
1 ), ( q

q )) ; q ∈ Sp(1)},
which acts on G by left and right translations. D. Gromoll and W. Meyer [5] have
shown that this action is free and that the orbit space M = G/U is a smooth
manifold which is an exotic 7-sphere (homeomorphic but not diffeomorphic to the
standard 7-sphere). If G is equipped with a Riemannian metric of nonnegative
sectional curvature whose isometry group contains U , then by O’Neill’s formula [1]
the orbit space M = G/U inherits a Riemannian metric of nonnegative sectional
curvature. Thus starting with the bi-invariant metric on G, Gromoll and Meyer
constructed a metric of nonnegative sectional curvature on the exotic sphere M .
In fact the curvature is strictly positive on some nonempty open subset of M .
However, as was observed by F. Wilhelm [7], there is also an open subset with zero
curvature planes in the tangent space of each of its points. But Wilhelm constructed
another U -invariant metric on Sp(2) (neither left nor right invariant) for which the
curvature of M is strictly positive outside a subset of measure zero in M (“almost
positive curvature”). In [4] the same fact was claimed for a much simpler and left
invariant metric on Sp(2); however, as was pointed out by the second author, the
proof contains a serious mistake (see Remark 3 at the end of the present paper).
The purpose of our paper is to correct this error. In fact we prove the following
result, some ideas of which go back to [3] (see Theorem 4.6 for details):

Theorem 1.1. There is a left invariant and a U-invariant metric on G = Sp(2)
such that the induced metric on M = G/U has strictly positive curvature outside a
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finite union of subvarieties of codimension ≥ 1. The zero curvature set Z ⊂ M can
be explicitly determined.

2. Cheeger metrics on Lie groups

On each Riemannian manifold, let us denote

κ(X, Y ) = 〈R(X, Y )Y, X〉,
sec(X, Y ) = κ(X, Y )/|X ∧ Y |2(2.1)

for any two tangent vectors X, Y ; the second expression is the sectional curvature
of the plane σ spanned by X, Y .

Let G be a Lie group with a left invariant metric 〈 , 〉 of nonnegative sectional
curvature. Suppose that the metric is also right invariant with respect to a compact
subgroup K ⊂ G, hence the induced metric on K is bi-invariant. The Lie algebras of
G and K will be denoted g and k. We may contract the metric on G in the direction
of the K-cosets by viewing G as the homogeneous space (G × K)/∆K (where
∆K = {(k, k); k ∈ K}) and choosing the metric induced from the Riemannian
product metric on G× sK (Cheeger contraction; cf. [2], [1]) where sK is K with a
metric scaled by s > 0. A vector (X, X ′) ∈ g × k is perpendicular to the ∆K-orbit
(“horizontal”) iff X + sX ′ ⊥ k, i.e. X ′ = −s−1Xk where Xk is the k-projection of
X. Using the Riemannian submersion G × K → G, (g, k) 	→ gk−1, a horizontal
vector (X,−s−1Xk) ∈ g × k is mapped onto X + s−1Xk = X⊥ + (1 + s−1)Xk ∈ g

where X⊥ = X − Xk ∈ k⊥. Vice versa, the horizontal lift of X = X⊥ + Xk ∈ g is
the horizontal vector

X̂ = (X̃,−s−1X̃k), where
X̃ = X⊥ +

s

s + 1
Xk.(2.2)

Thus the new (left invariant) metric is

〈X, Y 〉1 = 〈X̂, Ŷ 〉
= 〈X̃, Ỹ 〉 + s 〈s−1X̃k, s

−1Ỹk〉
= 〈X̃, Ỹ 〉 + s−1〈X̃k, Ỹk〉
= 〈X̃⊥, Ỹ⊥〉 + s−1(s + 1)〈X̃k, Ỹk〉
= 〈X⊥, Y⊥〉 + s(s + 1)−1〈Xk, Yk〉
= 〈X̃, Y 〉.(2.3)

For the curvature terms we have

(2.4) κ(X̂, Ŷ ) = κ(X̃, Ỹ ) + s−3κ(X̃k, Ỹk).

Since all terms are nonnegative, the left hand side vanishes if and only if both
summands on the right are zero. Thus a plane σ spanned by X, Y ∈ g has zero
curvature in the new metric, sec1(σ) = 0, if and only if sec(σ̃) = 0 and [Xk, Yk] = 0.1

Example 1. Suppose that the initial metric 〈 , 〉 on G is bi-invariant. Let g = k+p

be the orthogonal decomposition. Consider the above metric

(2.5) 〈X, Y 〉1 = 〈Xp, Yp〉 + s̃〈Xk, Yk〉

1The “if” statement is not obvious because of the nonnegative O’Neill term. However, in all
our examples starting with a bi-invariant metric on some Lie group, the vanishing of the curvature
implies that the O’Neill term also vanishes; see [3], pp. 29ff, equations (1) - (4) or [8], [6].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ALMOST POSITIVE CURVATURE ON THE GROMOLL-MEYER SPHERE 3265

with s̃ = s
s+1 . Then sec(σ̃) = 0 ⇐⇒ [X̃, Ỹ ] = 0, and hence sec1(σ) = 0 ⇐⇒

[X̃, Ỹ ] = 0, [Xk, Yk] = 0.

If (G, K) is a symmetric pair, i.e. the orthogonal complement p ⊂ g satisfies
[p, p] ⊂ k, then |X̃, Ỹ ]k = [X̃k, Ỹk] + [X̃p, Ỹp] and |X̃, Ỹ ]p = [X̃k, Ỹp] + [X̃p, Ỹk]; hence
sec1(σ) = 0 ⇐⇒
(2.6) 0 = [Xk, Yk] = [Xp, Yp] = [Xk, Yp] + [Xp, Yk] = [X, Y ].

Example 2. Let G ⊃ K ⊃ H be a chain of subgroups and suppose that both
(G, K) and (K, H) are symmetric pairs. Let g = k + p and k = h + q be the
corresponding decompositions. Start with the metric 〈 , 〉1 defined by Example 1,
depending on a parameter s > 0, and define the metric 〈 , 〉2 by Cheeger contraction
along H (depending on a new parameter t > 0) as in (2.3), where K is replaced by
H and 〈 , 〉1 takes the role of 〈 , 〉:

〈X, Y 〉2 = 〈Xp, Yp〉1 + 〈Xq, Yq〉1 + t̃〈Xh, Yh〉1
= 〈Xp, Yp〉 + s̃〈Xq, Yq〉 + s̃t̃〈Xh, Yh〉(2.7)

with t̃ = t
t+1 . Then sec2(σ) = 0 ⇐⇒ sec1(σ̃) = 0 and [X̃h, Ỹh] = 0 ⇐⇒

(2.8) 0 = [X̃, Ỹ ] = [X̃k, Ỹk] = [Xp, Yp] = [Xq, Yq] = [Xh, Yh],

where X̃ = Xp + Xq + t
t+1Xh and Ỹ = Yp + Yq + t

t+1Yh, as in (2.2).

3. Zero curvature planes on Sp(2)

Let us consider the chain G ⊃ K ⊃ H for G = Sp(2), K = Sp(1) × Sp(1) and
H = ∆Sp(1) = {( q

q ) ; q ∈ Sp(1)}. The pairs (G, K) and (K, H) are symmetric,
corresponding to the rank-one symmetric spaces S4 and S3. We start with the
bi-invariant trace metric 〈X, Y 〉 = Re trace X∗Y = Re

∑
xij yij on g = sp(2),

apply Cheeger contraction in the K-direction, and Cheeger-contract again in the
H-direction, defining metrics 〈 , 〉1 and 〈 , 〉2 as in Example 2.

Since G/K = S4 as well as K/H = S3 and H = S3 have positive curvature,
the vanishing of the last three brackets in (2.8) means the linear dependence of the

factors. In particular we may assume Yp = 0, i.e. Ỹ = Ỹk =
(

y1

y2

)
.

Case 1. Xp = 0, i.e. X̃ = X̃k =
(

x1

x2

)
.

From [X̃k, Ỹk] = 0 we obtain that the imaginary quaternions x1, y1 as well as
x2, y2 are linearly dependent. Moreover, from [Xq, Yq] = [Xh, Yh] = 0 we also see
that x1 ± x2 and y1 ± y2 are linearly dependent. Putting y = y1, we may assume

(3.1) Ỹ =
(

y
0

)
, X̃ =

(
0

y

)
.

Case 2. Xp = 0, i.e. X =
(

x1 −x̄
x x2

)
with x = 0.

Then 0 = [X̃, Ỹ ]p = [Xp, Ỹ ] ⇐⇒ y2 = xyx−1 for y := y1, and 0 = [X̃, Ỹ ]k =
[X̃k, Ỹk] ⇐⇒ x1 = αy1, x2 = βy2 for real numbers α, β; hence

(3.2) Ỹ =
(

y
xyx−1

)
, X̃ =

(
αy −x̄
x −αxyx−1

)
,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3266 J.-H. ESCHENBURG AND M. KERIN

where x, y ∈ H, y is imaginary and α ∈ R. We have β = −α since we require
〈X̃, Ỹ 〉 = 0.
Case 2a. α = 0; hence

(3.3) Ỹ =
(

y
xyx−1

)
, X̃ =

(
−x̄

x

)
.

Case 2b. α = 0; hence (without loss of generality) α = 1.
Then [Xh, Yh] = 0 iff y + xyx−1 and y − xyx−1 are proportional, which means

xyx−1 = βy. Comparing the norms on both sides we get

(3.4) xyx−1 = ± y

and

(3.5) Ỹ = Y± =
(

y
±y

)
, X̃ = X± =

(
y −x̄
x ∓y

)
.

Lemma 3.1. The zero curvature planes in g = TeG for G = Sp(2) and the metric
〈 , 〉2 are spanned by X, Y ∈ g with X̃, Ỹ given by either (3.1) or (3.3) or (3.5).

4. The Gromoll-Meyer sphere

The metric 〈 , 〉2 on G = Sp(2) is invariant under the action of U (cf. (1.1)) and
hence it induces a metric on the orbit space M = G/U . Consider any

(4.1) g =
(

a b
c d

)
∈ G.

Since g is unitary, the rows and columns are unit vectors, in particular

(4.2) |a|2 + |b|2 = 1.

The vertical space at g of the submersion π : G → G/U is Tg(U.g) = gVg with
Vg = {vg; v ∈ Im H} where

(4.3) vg = g−1

(
v 0
0 0

)
g −

(
v 0
0 v

)
=

(
āva − v āvb

b̄va b̄vb − v

)
.

Thus according to (2.3), a vector gX ∈ TgG is horizontal for π iff

(4.4) 0 = 〈X, vg〉2 = 〈X̃, vg〉1
for all v ∈ Im H. Note that 〈X̃, vg〉1 is just a multiple of 〈X̃, vg〉 if one of the
components of X̃ = X̃p + X̃k are zero. Now we discuss which of the zero curvature
planes in G = Sp(2) (see Lemma 3.1) can be horizontal at any g ∈ G. By a slight
abuse of language, a plane σ̃ spanned by X̃, Ỹ ∈ g will be called horizontal at g if

(4.5) 〈X̃, vg〉1 = 〈Ỹ , vg〉1 = 0

for all v ∈ Im H.

Case 1.

Lemma 4.1. A plane of type (3.1) is nowhere horizontal.

Proof. 〈Ỹ , vg〉 = 〈y, āva − v〉 = 〈ayā − y, v〉 vanishes for all v ∈ Im H iff y = ayā,
and likewise 〈X̃, vg〉 vanishes for all v iff y = byb̄. But this implies |a| = |b| = 1 in
contradiction to (4.2). �
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Case 2a.

Lemma 4.2. If a plane of type (3.3) is horizontal at g, then either a = 0 or b = 0
or

(4.6) det(I − Ad(a−1) − Ad(b−1)) = 0.

Proof. The matrix X̃ is horizontal at g if and only if

(4.7) 0 = 〈X̃, vg〉 = 2〈x, b̄va〉 = 2〈bxā, v〉
for all v ∈ Im H. This is equivalent to bxā ∈ R. Hence, either a = 0 or b = 0 or
bx = ra for some nonzero r ∈ R. In the latter case we have, in particular

Ad(bx) = Ad(a),(4.8)
Ad(x) = Ad(b−1) Ad(a),(4.9)

provided that b = 0. On the other hand, the matrix Ỹ is horizontal at g if and only
if

(4.10) 0 = 〈Ỹ , vg〉 = 〈|a|2 Ad(a)y − y + |b|2 Ad(bx)y − Ad(x)y, v〉
for all v ∈ Im H. Since y ∈ Im H, this means

0 = |a|2 Ad(a)y + |b|2 Ad(bx)y − y − Ad(x)y(4.11)
4.8= Ad(a)y − y − Ad(x)y
4.9= Ad(a)y − y − Ad(b−1) Ad(a)y,

where we have also used |a|2 + |b|2 = 1 (4.2). If a = 0, we obtain from the last
equality

Ad(a)y ∈ ker(I − Ad(a−1) − Ad(b−1))
and in particular

(4.6) det(I − Ad(a−1) − Ad(b−1)) = 0.

�
Lemma 4.3. There exists a plane of type (3.3) which is horizontal at g if and only
if either (4.6) holds or

(4.12) a = 0, | Im b | ≥ 1
2

or b = 0, | Im a | ≥ 1
2
.

Proof. Suppose first that a, b = 0. If (4.6) is satisfied, there is a nonzero w ∈
ker(I − Ad(a−1) − Ad(b−1)). Then defining y = Ad(a−1)w and x = b−1a, we
obtain a horizontal plane of type (3.3) at g. The converse conclusion was done
before.

Now suppose b = 0. Then |a| = 1 and equation (4.11) becomes

(4.13) Ad(a)y − y = Ad(x)y.

Geometrically, this equality means that Ad(a) rotates y by the angle π
3 (the three

vectors Ad(a)y, y, and Ad(x)y form the sides of an equilateral triangle). Hence
(4.13) has a solution (x, y) if and only if the rotation angle of the rotation Ad(a)
is ≥ π

3 . This in turn is equivalent to �(a, 1) ≥ π
6 , i.e. | Im a| ≥ 1

2 . Inserting the
solution (x, y) into (3.3) defines a horizontal plane of type (3.3). The case a = 0 is
similar. �

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3268 J.-H. ESCHENBURG AND M. KERIN

Case 2b.

Lemma 4.4. If a plane of type (3.5) is horizontal at g, then

(4.14) |a| = |b| = 1/
√

2

and w := Im a−1b satisfies

(4.15) 〈w − 2a−1wa, w〉 = 0.

Proof.

〈vg, Y+〉 = 〈āva + b̄vb − 2v, y〉 = 〈v, ayā + byb̄ − 2y〉,(4.16)
〈vg, Y−〉 = 〈āva − b̄vb, y〉 = 〈v, ayā − byb̄〉.(4.17)

Thus 〈Ỹ , Vg〉 = 0 iff one of the following equations holds:

ayā + byb̄ = 2y,
ayā − byb̄ = 0.

The first of these equations is impossible by the triangle inequality together with
(4.2):

|ayā + byb̄| ≤ |ayā| + |byb̄| ≤ (|a|2 + |b|2)|y| = |y| < |2y|.
Thus we are left with the second equation,

(4.18) ayā = byb̄,

which implies |a| = |b|.
Note that we have also shown that Y+ cannot be horizontal. Thus we need only

consider X̃ = X− and Ỹ = Y− in (3.5), and

(4.19) xyx−1 = −y,

which means that x is imaginary and nonzero with x ⊥ y.
Now let X̃, Ỹ be as above spanning σ̃. By (3.5) we have

(4.20) Ỹ =
(

y
−y

)
, X̃ =

(
y x
x y

)
with y ⊥ x ∈ Im H. Thus according to (2.5) we get for all v ∈ Im H

0 = 〈X̃, vg〉1 = 2〈x, b̄va〉 + s̃〈y, āva + b̄vb − 2v〉
= 2〈bxā, v〉 + s̃〈ayā + byb̄ − 2y, v〉
= 〈bxa−1 + s̃(aya−1 − 2y), v〉,(4.21)

where we have used 2ā = a−1 and ayā = byb̄ = 1
2aya−1 from (4.14) and (4.18).

Putting p = a−1b/s̃, we obtain

(4.22) Im apxa−1 = 2y − aya−1.

From aya−1 = byb−1 we see yp = py; thus p ∈ Cy := R + Ry and the left mul-
tiplication with p preserves Cy and C

⊥
y . By (4.19) we have x ∈ C

⊥
y and therefore

px ∈ C⊥
y . Conjugating (4.22) by a−1 we obtain

2a−1ya − y = Im (px) ⊥ y,(4.23)
〈2a−1ya − y, y〉 = 0.(4.24)

Since w = Im s̃p ∈ Cy is a multiple of y, we may replace y by w in equation (4.24)
and obtain (4.15). �
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Remark 1.

−1

y

2a  ya

0

Geometrically, (4.24) means that the angle between y and a−1ya is π/3 = 60o.
Thus the rotation angle of Ad(a−1) (and of Ad(b−1); see (4.18)) must be ≥ π/3;
hence �(1, a) ≥ π/6, or in other words,

(4.25)
| Im a|
|a| ≥ 1

2
.

Lemma 4.5. Suppose that a, b ∈ H satisfy (4.14), (4.15) and (4.25). Then there
exists a horizontal plane of type (3.5) at g = ( a b

c d ).

Proof. First suppose that p̃ = a−1b = s̃p is real which in view of (4.14) means
a = ±b. By (4.25), the rotation angle of Ad(a−1) is ≥ π/3; hence there exists a
nonzero y ∈ Im H which is rotated precisely by the angle π/3 and thus satisfies
(4.24). Put x = 2a−1ya − y ⊥ y and define X̃, Ỹ as in (4.20). This matrix pair is
of type (3.5), and it is perpendicular to Vg by (4.17) and (4.21).

Now suppose that w = Im p̃ = 0; in this case (4.15) implies (4.25). Then we
choose y = w and x = Im

(
p−1(2a−1wa − w)

)
; compare (4.23). Since w−2a−1wa ∈

C
⊥
y (it is imaginary and perpendicular to w = y), we also have p−1(w− 2a−1wa) ∈

C⊥
y ; hence x ⊥ y and thus xyx−1 = −y. Defining matrices X̃, Ỹ using (4.20), these

are of type (3.5) and perpendicular to Vg by (4.17) and (4.21). �
Remark 2. Clearly, the relations (4.6), (4.12), (4.14), (4.15) and (4.25) must be
invariant under the action of U . In fact, if u = (( q

1 ), ( q
q )), we have u.g = g̃ =(

ã b̃
c̃ d̃

)
with ã = qaq−1 and b̃ = qbq−1.

Now we have proved the following.

Theorem 4.6. Let G = Sp(2) with the left invariant metric (2.7) and U ⊂ G×G
defined by (1.1). The orbit space M = G/U inherits a Riemannian metric such
that the canonical projection π : G → M is a Riemannian submersion. Let

Z = {p ∈ M ; ∃σ ⊂ TpM : sec(σ) = 0}.
Then Z = Z1 ∪ Z2 ∪ Z3 ∪ Z4 where

π−1Z1 = {
(

a b
c d

)
; a, b = 0, det(I − Ad(a−1) − Ad(b−1)) = 0},

π−1Z2 = {
(

a b
c d

)
; |a| = |b|, w := Im a−1b ⊥ w − 2a−1wa, | Im a| ≥ |a|/2},

π−1Z3 = {
(

a b
c d

)
; b = c = 0, | Im a| ≥ 1/2},

π−1Z4 = {
(

a b
c d

)
; a = d = 0, | Im b| ≥ 1/2},

where all matrices
(

a b
c d

)
are supposed to belong to Sp(2). �

Remark 3. The mistake in [4] is in the third line of the proof of the theorem, page
1166. The computation of 〈vg, X〉 holds only for X ∈ k, but X may have a nonzero
p-component as well. Thus the matrix X in (4), p. 1166, is too special and must
be replaced with the more general X =

(
ry −x̄

x −rxyx−1

)
for arbitrary r ∈ R, and
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instead of (5) Im (bxā) = 0 we obtain (5′) Im (bxā) = r(y − ayā), while equation
(6) (ayā − y + bxyx−1b̄ − xyx−1 = 0) remains unchanged. We have 15 variables,
(a, b) ∈ S7, x ∈ H, y ∈ Im (H), r ∈ R, with 2 arbitrary real constants (the lengths
of x and y), and 6 constraint equations (5′) and (6) which reduce the number of free
variables to 7. Thus the solution set is likely to project onto a subset with positive
measure in the (a, b)-space S7; this would imply that the metric considered in [4]
fails to have almost positive curvature.
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